Overview of Chemical Looping Efforts at the National Energy Technology Laboratory Doug Straub

Oxy-Combustion and Chemical Looping Program Review, Pittsburgh, PA, August 25, 2017

Outline

- Motivation
 - Purpose
 - Current status
 - Path forward
- NETL/Research and Innovation Center (RIC) task breakdown for CLC
- Task by task description/summary
- Summary and conclusions

Promoted

Hematite

Hematite

Synthetic

Carrier

What Is Chemical Looping Combustion

- Fundamentally different approach to combustion
 - Fuel and air do not mix
 - Oxygen transport is provided by solid O_2 carrier
- CO₂ separation is as simple as condensing water vapor from flue gas (in theory)
- Typical temperature range (800-1000C)
 - Too low for thermal NOx production
- Capital equipment and process design is similar to CFB combustors

Purpose What is our end goal?

• Determine if CLC is a feasible technology for FE and worthy of additional investment/development

 \rightarrow Data and information for strategic decision making

- If it is feasible, THEN
 - Help developers overcome technical issues
 - Help technology be successful
 - Ultimate commercialization \rightarrow produces jobs and growth

Where Are We Now?

Current Status

- Preliminary techno-economic analyses (TEAs) have been completed (DOE/NETL-2014/1643)
 - Significant amount of uncertainty \rightarrow very little proven reliable operating data
 - Operability and reliability are major challenges for technology feasibility
 - Oxygen carrier makeup costs are a key factor for circulating reactor systems
- Technology gaps identified by developers
- CLC test facilities exist
 - Operating experiences are limited to less than ~100 hrs
 - Data quality and reliability need improved
 - TEAs require proven reliable operating data

Cost	Fe ₂ O ₃ (\$/MWh)	CaSO₄ (\$/MWh)	Conventional PC BBR Case 12
Capital	49.6	53.4	73.1
Fixed	11.3	12.2	15.7
Variable	25.7	8.4	13.2
Maintenance materials	3.2	3.5	4.7
Water	0.4	0.4	0.9
Oxygen carrier makeup *	18.7	1.1	N/A
Other chemicals & catalyst	1.9	1.7	6.4
Waste disposal	1.4	1.7	1.3
Fuel	28.4	30.8	35.3
Total	115.1	104.7	137.3

 $^*\text{Fe}_2\text{O}_3$ oxygen carrier makeup: 132 tons/day @ \$2,000 per ton; Limestone carrier makeup: 439 tons/day @ \$33.5 per ton

Ref: DOE/NETL – 2014/1643, Guidance for NETL's Oxycombustion R&D Program: Chemical Looping Combustion

Exhibit ES-3 Cost of electricity breakdown comparison

Critical issues that need to be addressed

- Determine if oxygen carrier make-up cost targets are feasible
 - Establish a baseline
 - Execute strategy to achieve cost targets

How Do We Get There?

- More hours of continuous operation in small pilot-scale units
 - Demonstrate steady-state operation
 - Confidence that components will meet performance requirements
- Accelerate char conversion
- Determine if solid/solid separation for char and/or ash separation is feasible

CLC Task Breakdown

• Component development

- Achieve 80% separation of 1 wt% char in O_2 carrier at separation flux of 0.5 kg/m²-s.
- Carrier performance and durability
 - Carrier make-up costs that are less than $5/MW_{th}$ -hr.

• Sensor development for CLC applications

- Demonstrate reliable solids circulation rate alternatives
- Experimental testing and operations
 - Demonstrate oxygen carrier make-up costs < 5/MW_{th}-hr in a circulating CLC test facility
- System Engineering and Analysis
 - Develop research metrics and other research targets based on techno economic evaluations

Component Development

- Reduce Solids Losses During Process Upsets
 - Metric: Order of magnitude lower solid loss rate relative to conventional cyclone
- Improve Dense Horizontal Transport Performance Predictions

a separation flux of 0.5 kg/m^2 -sec

• Metric: Predict pressure drops to within 5% across an L-valve for CLC systems

• Metric: For less than 1 wt% char/carrier mixture,

demonstrate 80% separation efficiency of fines and

0.7 **EXPERIMENTAL RESULTS** 0.64 0.6 0.6 Cumulative Mass Loss [kg] 0.5 Other Cyclone Concepts 0.4 0.4 0.3 0.2 0.2 0.1 **Uniflow Cyclone** -0.180 100 120 140 160 180 0 20 40 60

Time [s]

Solid-Solid Separations

Component Dev. – Solid-Solid Separations

For less than 1 wt% char/carrier mixture, demonstrate 80% separation efficiency of fines and a separation flux of 0.5 kg/m²-sec

Material	Size Range (µm)		Sphericity	Density	U _t (m/s)			
	Max	Avg	Min	SMD*	(-)	(kg/m^3)	Largest	Smallest
Steel Shot	360	200	105	194.39	0.923	7890	Х	1.78
Ilmenite	250	155	105	151.24	0.902	4457	Х	1.24
Al_2O_3 (small)	500	309	149	293.97	0.821	3968	Х	1.6
Al_2O_3 (large)	1000	613	300	550.56	0.820	3968	Х	3.18
Glass Beads	123	93	37	75.3	0.912	2464	0.39	Х

Correlation from Choi et al., 1985

$$K_{\rm elu}^* \left({\rm kg}/{\rm m}^2 {\rm s} \right) = 0.36 (X_0)^{1.09} \left(\frac{U_g - U_t}{U_t} \right)^{3.83}$$

Correlation from Monazam et al., 2017 $K_{elu}^{*}\left(\text{kg/m}^{2}\text{s}\right) = 0.354(X_{0})^{1.366} \left(\frac{U_{g}}{U_{t}}\right)^{2.586} \left(\frac{\rho_{fine}}{\rho_{coarse}}\right)^{-0.444}$

	Steel Shot /	Ilmenite /	1000x300µm	500x149µm
	Glass Beads	Glass Beads	Al ₂ O ₃ / Glass	Al ₂ O ₃ / Glass
			Beads	Beads
Static bed depth (cm)	7.62	7.62	7.62	7.62
Aspect Ratio, L/D (-)	0.75	0.75	0.75	0.75
Dimensionless velocity, $U_g/U_{t_{gb}}(-)$	0.8, 1.0, 1.2	0.8, 1.0, 1.2	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 3.0	1.0, 1.2, 1.5, 2.0, 2.5, 3.0
Gas Velocities (m/s)	0.31, 0.39, 0.47	0.31, 0.39, 0.47	0.39, 0.47, 0.59, 0.70, 0.78, 0.86, 0.98, 1.17	0.39, 0.47, 0.59, 0.78, 0.98, 1.17
Percentage of Glass Beads (wt%)	57	57	2, 25, 57, 77	2, 25, 57, 77, 95

Requires extrapolation to less than 1 wt% fines

Ref: Monazam, Breault, Weber, and Mayfield, "Elutriation of fines from binary particle mixtures in bubbling fluidized bed cold model," *Powder Technology* (2017), pp. 340–346

<u>Component Dev – Solid-Solid Mixing</u>

Scoping study to provide fundamental understanding of solid-solid mixing and investigate feasibility to develop CLC reactor design tools

Ash content (% mass)= {15, 25, 50, 75}

25% ash (Red: coal and Blue: ash)

Config. A

Carrier Manufacturing

- Develop and manage interactions with external manufacturers
- Attrition Studies
 - Develop engineering model for attrition based on first principles
- Metallurgical Surface Degradation
 - Improve oxygen carrier microstructural changes to redox reactions
- Novel Oxygen Carrier Scoping Studies
 - Higher temperature oxygen carrier materials (i.e., 1100-1200°C)
 - Faster char gasification \rightarrow Better fuel conversion? \rightarrow No char/carrier separation?
 - High oxygen transport capacity oxygen carriers (i.e., oxygen transport capacities in excess of 10 wt%).
 - Higher oxygen/carrier ratio \rightarrow Lower circulation rate? \rightarrow Lower make-up rate?
 - CLOU scoping studies

O2 Carrier Performance and Durability

Metric: O₂ carrier make-up cost performance should be less than \$5/MW_{th}-hr

Nano-

450

Systems Engineering and Analysis

Develop research metrics and other research targets based on techno-economic evaluations

- NETL fluidized bed fuel reactor models validated using 50 kW_{th} CLR data
 - Improves confidence and accuracy of CLC plant level TEA models
 - Provide R&D guidance to future CLR test operation
- Initial phase of NETL study on generalized oxygen carrier types
 - Higher temperature circulating CLC reactor (iron-based)
 - Higher oxygen transport capacity circulating CLC reactor (iron-based)
 - CLOU oxygen carrier analysis (copper-based carrier)

12

Ref: Bayham, S., Straub, D., and Weber, J., (2017), "Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material," <u>https://www.osti.gov/scitech/biblio/1347568-operation-netl-chemical-looping-reactor-natural-gas-novel-copper-iron-material</u>

NETL 50 kW_{th} Circulating CLC Testing

- Test Setup
- Carbon steel shell/refractory lined
- Fuel Reactor
 - Bubbling bed (8" dia)
 - Natural gas (1 of 3 locations)
- Air Reactor

J.S. DEPARTMENT OF

ENERCY

- Turbulent fluidized bed (6" dia)
- Natural gas for startup
- Gas Seal/Seal Pot
 - Bubbling bed (8" dia)
- Vent lines (3 individually controlled)
 - Cyclones remove hot solids prior to filter banks
 - Back-pressure control valves

nventory

- Fuel Reactor (760-815°C) 200 • Air Reactor – (840-915°C)
 - Circulation rate (100-200 kg/hr)
 - Fuel conversion (50-80%)

• Temperature ranges

.S. DEPARTMENT OF

- Carbon balance (95-100%)
- O₂ carrier losses during CLC operation

• Accumulated 40 hours of CLC operation

• New carrier was used for make-up

Time

NETL 50 kW_{th} Circulating CLC Testing

Recent Summary of Test Results

NETL 50 kW_{th} Circulating CLC Testing

Demonstrate oxygen carrier make-up costs \$5/MW_{th}-hr in a circulating CLC test facility

Material," https://www.osti.gov/scitech/biblio/1347568-operation-netl-chemical-looping-reactor-natural-gas-novel-copper-iron-material

• O₂ carrier make-up costs

- Baseline for 50kW_{th} test unit estimated
- Key issue for CLC technology maturation
- Gaps to address . . .
 - Lower-cost O₂ carriers
 - Fundamental effects of redox cycling on attrition
 - Need longer duration tests under redox and circulating conditions
- More studies are needed

Ref: Bayham, S., Straub, D., and Weber, J., (2017), "Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material," https://www.osti.gov/scitech/biblio/1347568-operation-netl-chemical-looping-reactor-natural-gas-novel-copper-iron-material

More studies are needed

NETL 50 kW_{th} Circulating CLC Testing Demonstrate oxygen carrier make-up costs \$5/MW_{th}-hr in a circulating CLC test facility

• O₂ carrier make-up costs

- Baseline for 50kW_{th} test unit estimated
- Key issue for CLC technology maturation
- Gaps to address . . .
 - Lower-cost O₂ carriers
 - Fundamental effects of redox cycling on attrition
 - Need longer duration tests under redox and circulating conditions

Sensor Development For CLC Applications Demonstrate reliable O₂ carrier circulation rate alternatives

- Microwave doppler sensor concept
 - Developed for high temperature applications
 - Tested in NETL's Chemical Looping Reactor
- Second generation sensor design in progress
 - Addresses coating issues in hot tests

Microwave sensor detects mean particle velocities in L-valve (cold flow testing)

Summary and Conclusions

- CLC is a promising approach for cost effect CO₂ capture
 - Projected capital cost is comparable to Circulating Fluidized Bed (CFB) combustion systems
 - Operating cost is still area of concern \rightarrow reliable operating data is needed
- Summary of recent accomplishments for NETL/RIC
 - NETL bubbling fluidized bed fuel reactor model validated using $50 \text{ kW}_{\text{th}}$ NETL test data
 - Improves confidence and accuracy of CLC plant level TEA models
 - Demonstrated NETL's patented high O₂ capacity carrier
 - Reduces solids circulation rate requirement \rightarrow lower OC make-up cost
 - New low cost manufacturing approach used by commercial vendor
 - 40 hours of CLC operation/1.6 hours of auto-thermal operation (i.e., no auxiliary heat addition)
 - Scoping studies in progress (solid-solid mixing, high temperature OC's, char/carrier separation, etc.)

